Single Phase Motor : Concepts - 5

HYSTERESIS MOTOR:

These motors consist of a chrome-steel cylinder of high retentivity so that the hysteresis loss is high. It has no winding. Once the magnetic polarities are induced in the rotor, it revolves synchronously with the revolving magnetic field. Since the rotor has no slots or winding, the motor is noiseless free from vibrations. Such a motor is ideal for sound equipment.

SUMMARY OF CHARACTERISTICS AND APPLICATIONS OF SINGLE PHASE MOTOR:


Motor typeMain characteristics         Applications
Split phase:
                                      Poor starting torque.                                        Non-reversing drives with
                                      Low power factor and  efficiency.                      light loads on starting.
                                      Shunt speed characteristics.
Capacitor motor:
                                      Moderately good starting torque.                    Suitable for reversing as well as
                                Higher power factor and efficiency                  non reversing drives without heavy starting 
                               than split phase type. Quiet operation             loads Used in passenger lifts, domestic                                      shunt speed characteristics.                                   refrigerators,   fans, etc.
                                    
Repulsion:
                               Good starting torque. Shunt speed                         Suitable for heavy starting
                              characteristics. . 
                               Additional winding needed for reversing.
     

Universal (Series):
                              Good starting torque. High power factor.           Vacuum cleaners,  motorized hand tools.
                                
 Small Synchronous motor:
                            Constant speed operation.                                 clocks, timing mechanisms, 
                            Poor starting                                                    picture and sound reproduction.
                            Low power factor. 
    


Mathematical analysis of single phase motor:

According to rotating field theory:

They are 2 rotating fields, Ff forward rotating field and Fb - Backward rotating field. Slip of rotor w.r.t forward rotating field is

Ns = (120 F) / P R.P.M.

Slip of rotor w.r.t backward rotating field :

2-s ωs= (2 π Ns)/60 rad/sec.

Rotating field Equivalent Single φ motor under running condition
Vf and Vb are components of stator voltage Vm.

Main winding current.

Im = Vm/ |Ztotal| = Vm/ |Zf/2 + Zb/ 2|

At x =m, magnetizing current is neglected.

The Circuit Model of Single-phase, single-winding motor is shown in the figure below :

Circuit model of single phase, single winding motor

Air gap power for forward field, pgf = ½ I 2m Rf

Air gap power for backward, pgb = ½ I 2m Rb

Rand Rare real parts of Zf’ and Zb

Torques produced by 2nd fields

Tf = 1/ωs Pgf and Tb = 1/ωs Pgb

ω= synch. Speed in rad/sec

Total torque. T= Tf – Tb = 1/ ω(Pgb - Pgb) = I2m/2 ωs (Rf - Rb)

Total rotor Cu loss: Rotor Cu loss corresponding to forward field + rotor Cu loss corresponding to backward field

S. Pgb + (2-s) Pgb

Total electric power. connected to gross mech-form
Pm = (1-s) ωs T = (1-s) (Pgf - Pgb) = (1-s) Pgf + [1-(2-s)]Pgb

Total electric power input to motor.
P Elect = Pgf + Pgb

Simplified formula

Emf/Emb = (r2/s + jX2 )/ (r2/2-s + jX2) at X = infinity

Impedence offered to Vf component, Zf= ½ [{r1m + r2/(2-s}}]+ j (X1 + X2)

Impedence offered to Vb component, Zb= ½ [{r1m + r2/(2-s}}]+ j (X1 + X2)

total = Zf + Zb Vf/Vb= Zf/Zb

Tf/Tb= Pgb/Pgb = (2-s)/s, Tf=1/ I2m r2/2s

Tb=1/ ωI2 m r2/(2(2-s))

Ttotal = Tf - Tb = (I2mr2)/2 ωs [1/s – 1/ (2-s)]Nω-m


Tf/Ttotal = [1/s]/[1/s – 1/(2-s]],

Tb/Ttotal = [1/(2-s)) ]/ [1/s – 1/(2-s)]



PAGES :   1   2   3   4   5




No comments:

Post a Comment